Mark scheme - Chromatography and Qualitative Analysis

Questio n		io	Answer/Indicative content	Marks	Guidance
1			F/aldehyde AND Tollens' (reagent) AND Silver (mirror/precipitate/ppt/solid) √ G/alkene/C=C AND Bromine/Br2 AND goes colourless/decolourised √ G/ketone AND 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate √ G/ketone AND Tollens' (reagent) AND no silver mirror/no change/no reaction √	4 (AO2.3) (AO3.3) (AO3.3) (AO3.3)	IGNORE use of 2,4-DNP with F ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃ ALLOW black ppt OR grey ppt ALLOW bromine water/ Br ₂ (aq) ALLOW errors in spelling for 2,4-DNP ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃ ALLOW black ppt OR grey ppt ALLOW alterative approach using acidified potassium dichromate for tests with F and/or G, with correct observations, alongside use of 2,4- DNP Examiner's Comments Candidates who found this question difficult often did not give a response that would identify all three of the functional groups (aldehyde, ketone and alkene). The use of Tollens' in identifying aldehydes was well demonstrated, however no reaction with Tollens' was less well demonstrated as a result for ketones.
			Total	4	
2	а	i	$H_{3}N - CH_{2} OH$ $H_{3}N - CH_{2} OH$ $H_{4}N - CH_{3} OH$ $H^{\prime}(aq)$ $H^{\prime}(aq)$ $(CH_{3})_{2}CHOH / H_{2}SO_{4}$ $H_{2}N - CH_{3} OH$ $H_{2}N - CH_{3} OH$ $(CH_{3})_{2}CHOH / H_{2}SO_{4}$ $H_{2}N - CH_{3} OH$ $CH_{3} OH$ $CH_{3} OH$	4(AO 2.5 ×4)	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW protonation of NH ₂ group in reaction with (CH ₃) ₂ CHOH i.e. $H_{3}N - \begin{pmatrix} H \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$

					Note: evidence may be shown with table
			$M(\text{amino acid}) = \frac{5.766}{0.0440} = 131 \text{ (g mol}^{-1}) \checkmark$ Amino acid = (CH ₃) ₂ CHCH ₂ CH(NH ₂)COOH/leucine AND working to show R = 57 to justify choice OR evidence to show <i>M</i> _r leucine = 131 to justify choice \checkmark	(AO 3.2)	Examiner's Comments Candidates are confident in tackling titration analysis and the majority of responses were well structured. Most candidates used the results to determine the <i>Mr</i> of the unknown amino acid and hence identify it as leucine. However, other approaches were also seen and these were given full credit if correct. A common error was incorrect scaling to determine the amount of amino acid used to make the 250 cm ³ solution. A significant number of responses simply multiplied the number of moles of acid by ten rather than using a factor of 250/21.30. Error carried forward marks were available and so the majority of candidates scored 3 or 4 marks.
	b	i	R _f value in range 0.33 – 0.35 √	1(AO 1.1)	 ALLOW 2 SF or more. But ignore digits after second sig fig ALLOW 0.3 for 0.33 Examiner's Comments Candidates are familiar with the calculation of R_f values and this question was answered very well. Although almost all candidates showed appropriate working as part of their response some candidates gave the final answer to only one significant figure and did not receive credit. Candidates were expected to give their answer to a number of significant figures appropriate to the measurements they had made, so a minimum of two significant figures was expected. The mark scheme allowed a response within a range, rather than a specific value, and most candidates scored in this part.
		ii	gly(cine) √ Amino acid matches (leu(cine) and) glycine in Solvent W AND Amino acid matches (ala(nine) and) glycine in Solvent X √	2(AO 2.3 ×2)	ALLOW glycine has the same/similar Rf as the unknown in both solvents/chromatograms ALLOW suitable alternatives for <i>R</i> _f e.g. moves same distance
			Total	11	
3		İ	FIRST CHECK ANSWER ON ANSWER LINE IF answer = 7.5 × 10 ⁻⁴ award 2 marks [K] in mol dm ⁻³ $\frac{9.13 \times 10^{-2}}{166} = 5.50 \times 10^{-4} \text{ (mol dm}^{-3}) \checkmark$	2	If there is an alternative answer, Apply ECF Alternative method [K] in g dm ⁻³ with peak area of 5.9 $9.13 \times 10^{-2} \times \frac{5.9}{4.3}$ OR $9.13 \times 10^{-2} \times 1.37$

г

		HO CH(CH ₃) ₂		Examiners were encouraged by the number of good responses to this problem solving question. Most candidates achieved at least one mark in this part, often from a correct structure of J . Although many candidates deduced that the R group for both L and M consisted of 3 C atoms and 7 H atoms, only the highest ability candidates were able to join these correctly. A small but significant number of responses showed R groups that involved O atoms, despite the prompt that the R represented an alkyl group. Candidates are advised to read questions carefully.
		Total	5	
				Note: both reagent and observation are required
				ALLOW bromine water/ Br ₂ (aq)
4	i	Bromine/ Br ₂	1	Examiner's Comments
		goes colourless/decolourised √		Almost all candidates were able to correctly describe the use of bromine as a test for an unsaturated chain.
				Note: both reagent and observation are required for the mark.
				ALLOW ammoniacal silver nitrate OR Ag ⁺ /NH ₃
	ii	Tollens' (reagent)	1	ALLOW black ppt OR grey ppt
		AND Silver (mirror/precipitate/ppt/solid) /		Examiner's Comments
				Almost all candidates were able to correctly describe the use of Tollens' reagent as a test for an aldehyde functional group.
		(Add) 2,4-dinitrophenylhydrazine AND orange/yellow/red precipitate √		ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
	ii i		3	Mark second and third points independently of response for first marking point
		Take melting point (of crystals) √		DO NOT ALLOW 2 nd and 3 rd marks for taking and comparing boiling points OR chromatograms
		Compare to known values/database \checkmark		Examiner's Comments
				The use of 2,4-dinitrophenylhydrazine as a test for the carbonyl group is well known by candidates at this level. The majority of the cohort correctly

				identified this test and the subsequent analysis of the melting point of the products as a method of identifying each compound. Lower ability candidate responses made reference to analysis of the boiling points of the cinnamaldehyde and methylcinnamaldehyde as a means of identification.
		Total	5	
				Indicative scientific points may include:
				Functional groups
		Refer to the marking instructions on page 5 of the mark scheme for guidance on marking this question.		 B alkene and tertiary alcohol C alkene and aldehyde D alkene and primary alcohol E ketone F secondary alcohol
		process of elimination		• G alkene and ketone
		AND includes essential detail for all required tests and observations There is a well-developed line of reasoning which is clear and logically structured		 Tests B, C, D and G → Bromine decolourises C, D and F → (H⁺/)Cr₂Or²⁻ green C, E and G → 2,4-DNP orange precipitate
5		Level 2 (3–4 marks) Develops a plan that identifies at least half of the compounds OR identifies the functional groups in most of the compounds AND includes detail of the required tests and observations	6	• C → Tollens silver mirror For Tollens' ALLOW alternative: Fehling's solution produces a 'brown / brick red / orange' precipitate For 2,4- DNP, ALLOW 2,4-DNPH and Brady's
		There is a line of responsing with some structure. The		BCDEFG
		Inere is a line of reasoning with some structure. The information is mostly relevant and supported by some evidence.		Bromine \checkmark \checkmark \checkmark (H+/)Cr ₂ Or ²⁻ \checkmark \checkmark \checkmark 2,4-DNP \checkmark \checkmark \checkmark
		Level 1 (1–2 marks) Develops a plan that attempts to identify the compounds OR functional groups AND includes detail of the required tests and observations <i>There is a line of reasoning using information that is</i> <i>mostly relevant.</i>		No credit for tests on products of tests, melting points, spectra, etc. For other tests seen, contact TL for advice
		0 marks – No response or no response worthy of credit with no compounds identified		Examiner's Comment: This question required candidates to apply their knowledge of functional group tests for several naturally occurring organic compounds. Candidates were free to plan a series of chemical tests and

				there were many different solutions. The best responses planned to identify compounds by using tests that eliminated compounds one by one for further tests. These were often concise and very clear. Unfortunately, many responses were excessive in length with confusing plans that sometimes broke down partway through. Some candidates gave chemical tests for the functional groups in each compound in turn. They then didn't link the tests together to show how the compounds could be distinguished. Weaker candidates sometimes wrote down chemical tests for the different functional groups without linking these to the compounds. Poorly prepared candidates sometimes had the wrong observations for the tests. A significant number of candidates thought that the cyclic alcohol F was a phenol. Despite these difficulties, there were many candidates who scored all six marks by a variety of methods.
		Total	6	
6	a	Empirical formula Mole Ratio C : H : O = $5.88 : 5.92 : 1.47 \checkmark$ Empirical formula = C ₄ H ₄ O \checkmark Molecular formula Molecular formula = C ₈ H ₈ O ₂ AND Evidence of 136 in working or from labelled peak in spectrum \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW $\frac{70.58}{12.0} \div \frac{5.92}{1.0} \div \frac{23.50}{16.0}$ ALLOW 4:4:1 if linked to C:H:O Alternative method for 3 marks: C: $\frac{136 \times 70.58/100}{12.0} = 8$ H: $\frac{136 \times 5.92/100}{1.0} = 8$ O: $\frac{136 \times 23.50/100}{16.0} = 2$ Examiner Comments The empirical formula was correctly calculated by all but the weakest candidates. The final mark was more difficult to obtain as it required evidence that the molar mass had been determined from the mass spectrum and used in establishing the molecular formula.
	b	Functional groups Phenol AND ketone ✓ Explanation Links phenol to (weak) acidity AND no reaction with Na ₂ CO ₃ (so not carboxylic acid) ✓ Links 2,4-DNP(H) or Brady's reagent observation to	3	DO NOT ALLOW any other functional groups for first marking point. ALLOW identity of functional groups in the explanation if not stated on functional group prompt line.

			carbonyl AND Tollens' reagent observation (so not an aldehyde) √		ALLOW "aldehyde or ketone" in place of carbonyl Examiner Comments Many candidates were able to suggest that the compound contained a ketone but found it more difficult to indicate the presence of phenol. Approximately 20% of the entry obtained all three marks. When explaining the presence of the ketone some failed to indicate that the 2,4-DNP test indicated that the compound must contain a carbonyl and just focused on the lack of reactivity with Tollens'. Answers suggesting the molecule contained a ketone as no reaction was observed with Tollens' did not gain credit when no reference to carbonyl was seen. Those who recognised the presence of a phenol explained that the only acidic functional group that does not react with sodium carbonate is a phenol.
	с		Carbon NMR analysis Peaks between 110–160 ppm are the (four) aromatic (carbon environments) √ Compound contains a C=O between 190 – 200 ppm AND Compound contains a C-C at 20 – 30 ppm √ Structure	3	 ALLOW peaks to be identified by: Peaks labelled on spectrum Peaks indicated on a chemical structure Peaks indicated from within text Note: If identifying aromatic peaks from the spectrum all four peaks should be indicated. ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous Examiner Comments When interpreting a carbon-13 NMR spectrum, candidates should be advised to fully label any peaks. Many candidates failed to indicate the presence of four aromatic peaks yet produced a structure containing a benzene ring. In some cases candidates did not link their answer to part (a) of the question giving structures that did not match their molecular formula.
			Total	9	
7	а	i	Reagent and observation sodium carbonate AND Fizzing/effervescence/bubbling √ Equation Correctly balanced equation √	2	Note: both reagent and observation are required for first mark ALLOW name or formula for any suitable carbonate e.g NaHCO ₃ , potassium carbonate etc. ALLOW reagent from equation if not stated elsewhere
		ii	e.g. $2RCOOH + Na_2CO_3 \rightarrow 2RCOONa + CO_2 + H_2O$ Reagent and observation Tollens' (reagent) AND	2	Note: both reagent and observation are required for first mark

		Silver (mirror) √		ALLOW ammoniacal silver nitrate OR Ag⁺/NH₃
		Equation		ALLOW H ⁺ /Cr ₂ O ₇ ²⁻ OR acidified (potassium/sodium) dichromate AND Orange to green (this would identify the aldehyde from the carboxylic acid, ketone and esters)
		$RCHO + [O] \to RCOOH \checkmark$		
b		2,4−dinitrophenylhydrazine AND Orange/yellow/red precipitate √	1	ALLOW errors in spelling ALLOW 2,4(-)DNP OR 2,4(-)DNPH ALLOW Brady's reagent or Brady's Test ALLOW solid OR crystals OR ppt as alternatives for precipitate
		CH ₃ COOC(CH ₃) ₃ + NaOH → CH ₃ COONa + $(CH_3)_3COH$		Note: the hydrolysis of either ester may be given
с	i	CH₃COONa ✓ Rest of equation correct ✓	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		(CH₃)₃CCOOCH₃ + NaOH → (CH₃)₃CCOONa + CH₃OH		DO NOT ALLOW molecular formulae of products (question requires structures of products to be shown)
		$(CH_3)_3CCOONa \checkmark$ Rest of equation correct \checkmark		
	ïi	Reagent and observation H ⁺ /Cr ₂ O ₇ ^{2−} OR acidified (potassium/sodium) dichromate AND Orange to green (with CH ₃ OH) \checkmark Equation CH ₃ OH + [O] → HCHO + H ₂ O OR CH ₃ OH + 2[O] → HCOOH + H ₂ O \checkmark	2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous DO NOT ALLOW molecular formulae (question requires structures of organic compounds to be shown)
	ii i	¹³ C NMR (1 mark) (It is) not possible to identify (the esters) with ¹³ C NMR AND (both) spectra would contain four peaks (with similar chemical shifts) √ ¹ H NMR (2 marks)	3	ALLOW 'same number of peaks' in place of 'four peaks'

8		Leucine AND valine √	1	
		(2,2−)dimethylpropanal √	17	
		Peak at (δ) 9.6 shows H–C=O AND No H on adjacent C atom as peak is singlet \checkmark H ₃ C $\xrightarrow{CH_3}_{CH_3}$ \xrightarrow{O}_{H_3} H ₃ C $\xrightarrow{CH_3}_{CH_3}$ \xrightarrow{O}_{H_3}		
	d	Possible structures for ketone (2 marks) $G_{H_3} - G_{-} - G_{H_2} - G_{H_2} - G_{H_2} - G_{H_2} - G_{H_3} - G_{-} - G_{H_2} - G_{H_3} - G_{-} - G_{H_2} - G_{H_3} - G_{-} - G_{-} - G_{H_3} - G_{-} - G_{-} - G_{H_3} - G_{-} - G_$	5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		singlet/peak between 3.0−4.3 (ppm) All three correct statements√√ Any two correct statements √		ALLOW any value or range of values within 3.0-4.3
		(¹ H NMR spectrum of) CH₃COOC(CH₃)₃ has a singlet/peak between 2.0−3.0 (ppm) (¹ H NMR spectrum of) (CH₃)₃CCOOCH₃ has a		ALLOW any value or range of values within 2.0−3.0
		(It is) possible to identify (the esters) with ^{1}H NMR		

			$R_{\rm f}$ values would be larger \checkmark		
		ii	(amino acids) are more soluble (in more polar solvent so would travel further up the plate) \checkmark	2	
			Total	3	
9	а		$I = \left\{ \begin{array}{c} I = \left\{ \begin{array}{c} I \\ I \\ I \\ I \end{array} \right\}^{\delta_{+}} + \left\{ \begin{array}{c} I \\ I \\ I \\ I \end{array} \right\}^{\delta_{+}} + \left\{ \begin{array}{c} I \\ I \\ I \\ I \\ I \end{array} \right\}^{\delta_{+}} + \left\{ \begin{array}{c} I \\ I \\ I \\ I \\ I \end{array} \right\}^{\delta_{+}} + \left\{ \begin{array}{c} I \\ I \\ I \\ I \\ I \\ I \\ I \end{array} \right\}^{\delta_{+}} + \left\{ \begin{array}{c} I \\ I $	2	First curly arrow must come from either a lone pair on O or negative charge on O Examiner's Comments Some candidates lost a mark for the incorrect positioning of the curly arrow from the hydroxide ion. The mark scheme specifies that it should start at either the lone pair on the oxygen atom or the negative change on the oxygen atom.
	b		Measure distance moved by spot/distance moved by solvent √	2	ALLOW attempt at calculation of R _f value using distances measured on the chromatogram IGNORE explanation of how chromatography works
			Compare (R _f) value with data book values/known values √ Two amino acids have the same/similar R _f value OR similar adsorption OR move the same/similar distance √	1	ALLOW One spot contains two amino acids ALLOW Two amino acids have not separated IGNORE relative solubility ALLOW two of the amino acids have similar structures Examiner's Comments This question discriminated well with relatively few candidates able to score all three marks. Some candidates attempted to explain how the technique separates components between a mobile phase and a stationary phase which was not required by the question. There was some confusion with gas chromatography and retention times. Vague answers about all amino acids having similar structures did not score the final marking point to explain why only two spots appeared on the chromatogram.

					A more challenging question with relatively few candidates able to show the position of all three chiral centres on a correct tripeptide structure. Most candidates identified the chiral centres in the amino acid backbone of aspartic acid and isoleucine and realised that glycine was not chiral, but many missed the second chiral centre in isoleucine.
			Total	9	
1 0	а		(Relative) solubility (in stationary phase) √	1	ALLOW how well the compound dissolves IGNORE retention time AND partition DO NOT ALLOW adsorption OR absorption Examiner's Comments The analysis of mixtures using gas chromatography was not well understood. The specification states that a liquid stationary phase separates by relative solubility and many incorrect answers focussed on the adsorption of molecules onto the solid beads rather the relative solubility of molecules in the liquid polymer that coated the beads. No credit was given to answers that stated that the separation produced different retention times.
	b	i	Compound B AND M⁺ / molecular ion peak (at m/z) = 124	1	ALLOW Mr = 124 IGNORE compound B because $m/z = 124$ ALLOW $C_7H_8O_2^+ = 124$ OR $C_7H_8O_2 = 124$ ALLOW peak at (m/z =) 109 due to HOC ₆ H ₄ O ⁺ ALLOW peak at (m/z =) 109 due to loss of CH ₃ IGNORE reference to other peaks in the spectrum Examiner's Comments This question was well answered. The majority of candidates focussed on the different molar masses of the compounds and many referred to the M ⁺ peak or molecular ion peak of compound B .
		ii	Compound (B) is less soluble in the stationary phase / liquid	1	ORA Answer refers to the first compound to emerge from the column ALLOW compound (B) is more soluble in mobile phase / gas ALLOW compound interacts less with stationary phase / liquid OR compound interacts more with mobile phase / gas IGNORE compound adsorbs less IGNORE compound is not very soluble (comparison needed) IGNORE volatility OR reactivity Examiner's Comments

					Relatively few creditworthy responses were seen here. The specification describes chromatography as an analytical technique that separates components in a mixture between a mobile phase and a stationary phase. Many candidates referred to differences in solubility or the strength of interactions without linking this to a particular phase in the column.
			Total	3	
					ALLOW ammonia + silver nitrate for reagent
					ALLOW black solid / ppt
					ALLOW 'the aldehyde gives a silver mirror'
			FIRST react all with		ALLOW solid OR crystals OR ppt as alternatives for precipitate
			(formed) with compound D		ALLOW correct structural OR displayed OR skeletal formulae
			OR with Fehling's / Benedict's solutions AND (brick- red / orange) solid / precipitate (formed) with compound D √	C D s	OR combination of above as long as unambiguous
			NOTE: eliminates D		DO NOT ALLOW molecular formulae for organic structures
					IGNORE all references to 2,4- dinitrophenylhydrazine / Brady's
1 1			$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	4	ACCEPT acidified dichromate ALLOW blue / green blue IGNORE equation for oxidation of D
			\checkmark		
			THEN react C and E with H ₂ SO ₄ / H ⁺ AND K ₂ Cr ₂ O ₇ / Cr ₂ O ₇ ²⁻ / Na ₂ Cr ₂ O ₇		ALLOW equation for partial oxidation
			AND colour change OR green colour with compound C		ОН + [0] - + H ₂ 0 0 + H ₂ 0
			with compound E		ALLOW alternative sequences
			✓		e.g. FIRST react all with H ₂ SO ₄ AND K ₂ Cr ₂ O ₇
			$ \begin{array}{c} & & & \\ & $		colour change with C and D eliminates E
					At least one correct equation and structure of one product from either reaction required for the second mark.
					NB several possible products for the oxidation of D

			THEN react C and D with Tollens' distinguishes between C and D Examiner's Comments This question discriminated well. Most candidates were able to score at least one mark for the correct use of Tollens' reagent. Answers needed to refer to test tube reactions and any reference to the use of Brady's reagent was ignored since it would give a similar observation with all three compounds. Many excellent answers described a logical sequence of tests involving the use of ammoniacal silver nitrate and acidified potassium dichromate. Some neglected to acidify the dichromate and equations were quite often missing from the answer. The best candidates included full balanced equations which clearly showed the structures of the reactants and products.
	Total	4	
1 a	 * Please refer to the marking instruction point 10 for guidance on how to mark this question. Level 3 (5–6 marks) Correctly labelled diagram of apparatus that works, with no safety problems AND Full appreciation of further two steps required to gain pure sample There is a well-developed diagram which is clear and structured. The information on further purification is detailed and relevant. Level 2 (3–4 marks) Labelled diagram of apparatus but with safety / procedural problems OR clear diagram of functional apparatus without labelling AND Some details of further purification steps The diagram presents apparatus that is in the mostpart relevant with some correct labelling, and supported by some details of further purification steps. Level 1 (1–2 marks) Diagram of apparatus drawn with no labelling OR labelled diagram with significant safety / procedural problems AND Few or imprecise details about further purification stages 	6	Indicative scientific points may include: Diagram Includes following components: distillation flask heat source thermometer at outlet (bulb level with outlet) still- head water condenser (correct direction of water flow) receiving vessel open system. Further purification Shake and leave to settle in a separating funnel Separate layers by tapping off Add (a small amount of) anhydrous magnesium sulfate / anhydrous calcium chloride to organic layer (in a dry conical flask) (Re)distil the organic layer Collect fraction distilling at (between 150 °C and) 156 °C.

	b		The diagram is basic and unstructured. Any mention of purification steps is limited to generic term, e.g. 'drying', without relevant detail. 0 marks No response or no response worthy of credit. Lack of (further) effervescence	1	ALLOW fizzing / bubbling stops
	с		Take samples from reaction mixture at regular intervals Spot / run on a TLC plate, alongside cyclohexanol (and cyclohexanone) controls	2	ALLOW "frequent" for "regular" ALLOW measure / compare <i>R</i> f value to cyclohexanol IGNORE reference to solvent or visualising chemicals / UV
	d		React (sample of distillate) with 2,4- dinitrophenylhydrazine recrystallise AND determine the melting point Compare melting point to known / library value for cyclohexanone (derivative)	3	ALLOW (2,4-)DNPH / Brady's reagent
			Total	12	
1 3		i	a solvent lional b solvent lional a solvent lional b solvent lional a solvent lional b solvent lional	2	Check measurements on diagram using online measuring tool. Distance from baseline to top of spot for aspirin = 70–80% of baseline → solvent front Distance from baseline to top of spot for aspirin = 25–35% of baseline → solvent front
		ii	Melting point range between 130–140°C AND Range ≥ 2°C	1	Range that starts <138 and finishes ≤140
			Total	3	
1 4	а		F–K clearly identified	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW any combination of skeletal OR structural
			Compound F:		OR displayed formula as long as unambiguous

